Wednesday, 18 October, 2017

How Earth’s Plate Tectonics Work

How Earth’s Plate Tectonics Work.

Plate tectonics is a scientific theory describing the large-scale motion of seven large plates and the movements of a larger number of smaller plates of the Earth’s lithosphere, since tectonic processes began on Earth between 3 and 3.5 billion years ago. The model builds on the concept of continental drift, an idea developed during the first decades of the 20th century. The geoscientific community accepted plate-tectonic theory after seafloor spreading was validated in the late 1950s and early 1960s. The lithosphere, which is the rigid outermost shell of a planet (the crust and upper mantle), is broken into tectonic plates. Where the plates meet, their relative motion determines the type of boundary: convergent, divergent, or transform. Earthquakes, volcanic activity, mountain-building, and trench formation occur along these plate boundaries (or faults). The relative movement of the plates typically ranges from zero to 100 mm annually. Tectonic plates are able to move because the Earth’s lithosphere has greater mechanical strength than the underlying asthenosphere. Lateral density variations in the mantle result in convection; that is, the slow creeping motion of Earth’s solid mantle. Plate movement is thought to be driven by a combination of the motion of the seafloor away from the spreading ridge (due to variations in topography and density of the crust, which result in differences in gravitational forces) and drag, with downward suction, at the subduction zones. Another explanation lies in the different forces generated by tidal forces of the Sun and Moon. The relative importance of each of these factors and their relationship to each other is unclear, and still the subject of much debate.

Plate motion based on Global Positioning System (GPS) satellite data from NASA JPL. The vectors show direction and magnitude of motion.


Read Articles Here: